Wednesday, May 28, 2008

What is the purpose of Wi-Fi ad-hoc mode? Why would I use it?

The 802.11 standard defines two modes of operation: Infrastructure mode, where all stations communicate through an access point, and ad-hoc mode, where stations communicate directly without the help of an intermediary. Ad-hoc mode can be useful for temporary peer-to-peer applications, such as when two laptop users want to exchange files over Wi-Fi.

Most businesses discourage use of ad-hoc mode because they prefer to enforce corporate security policy at the access point and gateway or switch connected to the access point. Users that communicate directly over ad-hoc mode essentially bypass those security measures. Ad-hoc mode can even be used as an attack method. For example, a Windows XP PC that previously associated to an access point with a given name (SSID) can be tricked into automatically re-associating in Ad-hoc mode to an attacker's laptop that advertises that SSID. You avoid this attack by configuring XP (or any other wireless client software) to associate to preferred SSIDs in infrastructure mode only.

On the other hand, several vendors are now using ad-hoc mode as the foundation for building wireless mesh networks. Mesh networks have many applications, including outdoor metropolitan networks and mobile ad-hoc networks (MANETs). To learn more about Ad-hoc mode and its use in mesh networks, visit this NIST resource page. A standard for mesh networks is now under development, designated IEEE 802.11s.

In short, ad-hoc mode has many constructive uses, but unless you have a specific reason for enabling, your safest best today is to disable ad-hoc mode to prevent unwanted or risky associations.


What is Hub

In general, a hub is the central part of a wheel where the spokes come together. The term is familiar to frequent fliers who travel through airport "hubs" to make connecting flights from one point to another. In data communications, a hub is a place of convergence where data arrives from one or more directions and is forwarded out in one or more other directions. A hub usually includes a switch of some kind. (And a product that is called a "switch" could usually be considered a hub as well.) The distinction seems to be that the hub is the place where data comes together and the switch is what determines how and where data is forwarded from the place where data comes together. Regarded in its switching aspects, a hub can also include a router.

1) In describing network topologies, a hub topology consists of a backbone (main circuit) to which a number of outgoing lines can be attached ("dropped"), each providing one or more connection port for device to attach to. For Internet users not connected to a local area network, this is the general topology used by your access provider. Other common network topologies are the bus network and the ring network. (Either of these could possibly feed into a hub network, using a bridge.)

2) As a network product, a hub may include a group of modem cards for dial-in users, a gateway card for connections to a local area network (for example, an Ethernet or a Token Ring), and a connection to a line (the main line in this example).

What is bridge in network world

In telecommunication networks, a bridge is a product that connects a local area network (LAN) to another local area network that uses the same protocol (for example, Ethernet or Token Ring). You can envision a bridge as being a device that decides whether a message from you to someone else is going to the local area network in your building or to someone on the local area network in the building across the street. A bridge examines each message on a LAN, "passing" those known to be within the same LAN, and forwarding those known to be on the other interconnected LAN (or LANs).

In bridging networks, computer or node addresses have no specific relationship to location. For this reason, messages are sent out to every address on the network and accepted only by the intended destination node. Bridges learn which addresses are on which network and develop a learning table so that subsequent messages can be forwarded to the right network.

Bridging networks are generally always interconnected local area networks since broadcasting every message to all possible destinations would flood a larger network with unnecessary traffic. For this reason, router networks such as the Internet use a scheme that assigns addresses to nodes so that a message or packet can be forwarded only in one general direction rather than forwarded in all directions.

A bridge works at the data-link (physical network) level of a network, copying a data frame from one network to the next network along the communications path.

A bridge is sometimes combined with a router in a product called a brouter.


Tuesday, May 27, 2008

Switch is .....

In a telecommunications network, a switch is a device that channels incoming data from any of multiple input ports to the specific output port that will take the data toward its intended destination. In the traditional circuit-switched telephone network, one or more switches are used to set up a dedicated though temporary connection or circuit for an exchange between two or more parties. On an Ethernet local area network (LAN), a switch determines from the physical device (Media Access Control or MAC) address in each incoming message frame which output port to forward it to and out of. In a wide area packet-switched network such as the Internet, a switch determines from the IP address in each packet which output port to use for the next part of its trip to the intended destination.

In the Open Systems Interconnection (OSI) communications model, a switch performs the layer 2 or Data-Link layer function. That is, it simply looks at each packet or data unit and determines from a physical address (the "MAC address") which device a data unit is intended for and switches it out toward that device. However, in wide area networks such as the Internet, the destination address requires a look-up in a routing table by a device known as a router. Some newer switches also perform routing functions (layer 3 or the Network layer functions in OSI) and are sometimes called IP switches.

On larger networks, the trip from one switch point to another in the network is called a hop. The time a switch takes to figure out where to forward a data unit is called its latency. The price paid for having the flexibility that switches provide in a network is this latency. Switches are found at the backbone and gateway levels of a network where one network connects with another and at the subnetwork level where data is being forwarded close to its destination or origin. The former are often known as core switches and the latter as desktop switches.

In the simplest networks, a switch is not required for messages that are sent and received within the network. For example, a local area network may be organized in a Token Ring or bus arrangement in which each possible destination inspects each message and reads any message with its address.

Circuit-Switching version Packet-Switching

A network's paths can be used exclusively for a certain duration by two or more parties and then switched for use to another set of parties. This type of "switching" is known as circuit-switching and is really a dedicated and continuously connected path for its duration. Today, an ordinary voice phone call generally uses circuit-switching.

Most data today is sent, using digital signals, over networks that use packet-switching. Using packet-switching, all network users can share the same paths at the same time and the particular route a data unit travels can be varied as conditions change. In packet-switching, a message is divided into packets, which are units of a certain number of bytes. The network addresses of the sender and of the destination are added to the packet. Each network point looks at the packet to see where to send it next. Packets in the same message may travel different routes and may not arrive in the same order that they were sent. At the destination, the packets in a message are collected and reassembled into the original message.


Router is ......

In packet-switched networks such as the Internet, a router is a device or, in some cases, software in a computer, that determines the next network point to which a packet should be forwarded toward its destination. The router is connected to at least two networks and decides which way to send each information packet based on its current understanding of the state of the networks it is connected to. A router is located at any gateway (where one network meets another), including each point-of-presence on the Internet. A router is often included as part of a network switch.

A router may create or maintain a table of the available routes and their conditions and use this information along with distance and cost algorithms to determine the best route for a given packet. Typically, a packet may travel through a number of network points with routers before arriving at its destination. Routing is a function associated with the Network layer (layer 3) in the standard model of network programming, the Open Systems Interconnection (OSI) model. A layer-3 switch is a switch that can perform routing functions.

An edge router is a router that interfaces with an asynchronous transfer mode (ATM) network. A brouter is a network bridge combined with a router.

For home and business computer users who have high-speed Internet connections such as cable, satellite, or DSL, a router can act as a hardware firewall. This is true even if the home or business has only one computer. Many engineers believe that the use of a router provides better protection against hacking than a software firewall, because no computer Internet Protocol address are directly exposed to the Internet. This makes port scans (a technique for exploring weaknesses) essentially impossible. In addition, a router does not consume computer resources as a software firewall does. Commercially manufactured routers are easy to install, reasonably priced, and available for hard-wired or wireless networks.